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In the previous chapter we examined the linearised radiation pressure in-
teraction between the optical field and mechanical oscillator in a cavity op-
tomechanical system in the case that the optical cavity is coherently driven
on resonance. This chapter introduces radiation pressure-based coherent cou-
pling between light and a mechanical oscillator that occurs when an optical
detuning is introduced. We discuss effects such as resolved sideband cooling,
optomechanically induced transparency, and the generation of optomechani-
cal entanglement and squeezed states of light that manifest from this coherent
interaction. Along the way we introduce the concepts of Wiener filtering to
optimally estimate the mechanical position and momentum from the output
optical field, methods to verify and quantify two-mode Gaussian entangle-
ment, and the polaron transformation important for later chapters involving
single photon optomechanics.

4.1 STRONG COUPLING

As a prelude to optomechanical cooling, it is illustrative to examine the
dissipation-free dynamics generated by the linearised optomechanical Hamil-
tonian of Eq. (2.41) in the special case where the optical detuning equals the
mechanical resonance frequency (A = ). The “X-X” form of the coupling
term in this Hamiltonian brings to mind the simple problem of a pair of lin-
early coupled oscillators. Indeed, this is the essential physics described by the
Hamiltonian. The choice of A = €, such that the driving laser field is detuned
to the red side of the optical resonance by the mechanical resonance frequency,
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makes the effective resonance frequencies of the two oscillators degenerate,!
such that they couple most effectively. Expressed in terms of annihilation
operators, the optomechanical Hamiltonian is then

H = hQa'a + by + hg (a’ +a) (b7 + ), (4.1)

where as usual g is the coherent amplitude boosted optomechanical coupling
rate. This fully symmetric Hamiltonian may be straightforwardly diagonalised
by transforming to the normal modes

(a+b) (4.2)

H§‘|>—t
\}

d = —(a—-V), 4.3

7 (a —b) (4.3)

where it is easy to show ¢ and d preserve the Boson commutation properties

of a and b (Eq. (1.2)). Substituting in for a and b in the Hamiltonian and
expanding, after some work we find

H=hrQ+g)cle+n(Q—g)dd (4.4)
Exercise 4.1 Show this result.

Several important facts can be gleaned from this expression. First, in this
normal mode basis the Hamiltonian is indeed diagonalised, with the interac-
tion between the modes removed and the dynamics of the system consequently
substantially simplified. Second, ¢ and d are a pair of independent quantum
harmonic oscillators. Finally, the original coupling between modes a and b
is replaced with opposing frequencies shifts on ¢ and d, resulting in a fre-
quency splitting of 2g between these modes (see experimental demonstration
in Fig. 4.6).

In the time domain, ¢ and d then exhibit simple harmonic oscillation with
the well-known dynamics?

c(t) = ¢(0)e ()t (4.5a)
dt) = d(0)e " @=91, (4.5b)

Using b = (c — d)/+/2 the dynamics of the mechanical oscillator can then be
shown to be

b(t) = [b(0)cos gt — ia(0)sin gt] e ¥ (4.6)
b (t) cos gt — ia ) (¢) sin gt, (4.7)

where a(?)(t) and b(")(¢) are the annihilation operators that would describe
the time evolution of the intracavity optical field and mechanical oscillator if

!'Remember that, in Eq. (2.41), the optical field is in a rotating frame at the drive laser
frequency.
2This can be shown, for example, using Eq. (1.20).
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there was no optomechanical coupling (¢ = 0). A similar calculation for the
optical field gives

a(t) = a®(t) cos gt — ib (¢) sin gt. (4.8)

We see that, setting an optical detuning A = Q, the optomechanical inter-
action allows the quantum state of the light and mechanical oscillator to be
coherently and unitarily exchanged.

Of course, in the realistic scenario where dissipation is present, the ex-
change becomes imperfect. It is natural to then define two physical regimes,
the strong coupling and quantum-coherent coupling regimes.? In the strong
coupling regime g > {k,T'}, so that a full exchange between light and oscillator
occurs within the mechanical and optical decay times and the non-degeneracy
between normal modes is spectrally resolvable. In the quantum-coherent cou-
pling regime g > {(2nr + 1)k, (2n 4+ 1)I'} where n and 7y, are the mechanical
and optical bath mean occupancies, so that a full exchange between light
and oscillator occurs within the quantum decoherence time of both the light
and mechanical oscillator (see Section 2.5). The strong coupling and quantum-
coherent coupling regimes were first experimentally realised in [130] and [295],
respectively.

Notably, if gt = 7/2 the optical and mechanical states are, in the dissi-
pationless scenario of Egs. (4.7) and (4.8), exactly exchanged. A continuous
version of this state-swap is discussed in Section 8.3 as a method to realise
quantum conversion between optical and microwave degrees of freedom. Even
if the light is only in a relatively uninteresting coherent state,* a state-swap
allows ground state cooling of the mechanical oscillator, with the typically
high thermal occupancy mechanical state swapped out onto the optical field
and the near zero thermal occupancy optical state swapped onto the mechan-
ical oscillator. In the following section, we introduce a continuous version of
this approach to mechanical cooling, including dissipative processes that act
to limit the final mechanical occupancy.

4.2  OPTICAL COOLING OF MECHANICAL MOTION

In the previous chapter we introduced on-resonance (A = 0) optical probing
of mechanical motion, and showed that radiation pressure shot noise heats the
mechanical oscillator. This back-action heating is a consequence of the fact
that information about the mechanical motion is imprinted on the phase of the
optical field, and is necessary to ensure that the Heisenberg uncertainty prin-
ciple is not violated. However, as the simple example in the previous section

3Note that these regimes are different from the radiation pressure shot noise dominated
regime introduced in Section 3.2, which requires that the optomechanical cooperativity
C = 4g? /kT’ > 7 + 1/2. This radiation pressure shot noise dominated regime lies between
the strong coupling and quantum-coherent coupling regimes.

4S80 that, in the displaced frame used in the linearised picture, it is in a vacuum state.
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demonstrated, the presence of back-action heating does not necessarily pre-
clude an overall optical cooling effect on the mechanical oscillator. Indeed as
we saw briefly in Section 3.2.2, the mapping of the mechanical motion onto the
intracavity field suggests a possible a cooling mechanism when A # 0 based
on dynamical back-action. The essential idea is that, when the optical cavity
is detuned, the mechanical position is imprinted — at least in part — on the
amplitude of the optical field which then back-acts through radiation pressure
upon the mechanical oscillator. Since the optical cavity also induces a delay
in the optical response, this dynamical back-action is retarded, with a compo-
nent of the optical force being proportional to the velocity of the mechanical
oscillator. Depending on the sign of this component, it either damps/cools or
amplifies/heats the mechanical motion [37, 160].

An alternative and particularly powerful approach to understanding op-
tomechanical cooling — and indeed coherent interactions between light and
mechanical systems in general — is via an energy level diagram, as shown in
Fig. 4.1. Here we observe that downwards going phonon number transitions
are resonantly enhanced when the optical driving tone is red detuned, while
upwards going transitions are enhanced by blue detuning. We will see in what
follows that these two operations can be thought of, respectively, as beam
splitting and parametric operations between the light and mechanical oscilla-
tor, with the former allowing cooling while the latter can be used to generate
optomechanical entanglement.

4.2.1 Effective temperature of the optical bath

The optical field can be thought of as a thermal bath for the mechanical
oscillator in a cavity optomechanical system, with radiation pressure shot
noise introducing a random driving force (see, e.g., Section 3.3.1). We found
in Section 1.2 that the temperature of a high-quality quantum oscillator that
is linearly forced by a bath is governed by the ratio of bath power spectral
densities at £€2. This relationship provides an elegant approach to determining
the effect of the optical field on the temperature of the oscillator, as first
observed in [191]. We follow the approach in that paper here.

To understand the effect of the optical field on the temperature of the me-
chanical oscillator, it is useful to consider first the case where the mechanical
oscillator has zero intrinsic dissipation (I' — 0), or at least where the heating
from the optical field dominates the heating from the mechanical bath.? In
this case, the optical force makes the only significant contribution towards
the force power spectral density experienced by the mechanical oscillator. In
Section 3.3.1 we found the optical force Fy, in a cavity optomechanical system
in the linearised regime by taking the derivative of the optomechanical Hamil-
tonian with respect to ¢. Here, we similarly use the nonlinearised Hamiltonian

5That is, in the regime where radiation pressure shot noise dominates mechanical thermal
noise.



98 B Quantum optomechanics

In — 2,2)

Ie—
|?’L — 2, 1>y.

FIGURE 4.1 Energy level diagram for optical cooling of mechanical mo-
tion. |n, m): n-phonon, m-photon state. €).: cavity resonance frequency,
Q: laser resonance frequency. Laser driving at frequency €y < €. is
closer to resonance for mechanical cooling transitions |n,m) — |n —
1,m + 1) than heating transitions |n,m) — |n + 1,m — 1), resulting in
preferential cooling. In the resolved sideband limit where x < €2, optimal
cooling is achieved when A = Q. — Qp = Q.

of Eq. (2.15) to obtain the force

. OH

Fr(t) = 5 hGa'a. (4.9)

The power spectral density of this force can be found from its auto-
correlation function (see Eq. (1.43)), which is given by

<FL(t + T)FL(t)>t:0 — G (al(t + T)a(t + T)al (Da(t)),_,  (4.10)
h292

Q

[oﬂ + 2y + 2 <X(t + T)X(t)>t:0] .

Here, we have made the usual substitution a — o + a to displace away the
coherent amplitude of the intracavity field, linearised the resulting expres-
sion by neglecting the term that does not contain the coherent amplitude «,
substituted oG = ago/r., = g/x.p (see Section 2.3), and used the relation
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(a®(t)a(t)) = np with nr being the thermal occupancy of the displaced® inci-
dent optical field. As usual X is the amplitude quadrature of the intracavity
field.

Exercise 4.2 Derive this result for yourself.

As we have discussed previously, for an optical field in thermal equilibrium
with its environment, ny, is given by Eq. (1.7) and is essentially zero. Here we
retain the optical occupancy explicitly, motivated both by the aim of clarifying
the effect of a nonzero optical bath temperature and by the fact that, in
realistic experiments, technical noise often raises the optical occupancy above
its equilibrium value.
The optical force power spectral density can then be directly calculated
using Eq. (1.43), with the result
h2 92 B
SFLFL(W) = — [(O&Q—I-Q?”LL) 5(w>—|—25)(x(w)] . (4.11)

.’L‘Zp

As might be expected, we see that this consists of a coherent mean force at w =
0 and broadband incoherent noise driving due to the amplitude quadrature
power spectral density of the intracavity field. It is through this broadband
incoherent forcing that the optical field acts like a thermal bath.

Using Eq. (1.43) the power spectral density of the intracavity field can be
expressed in terms of frequency domain annihilation and creation operators
as

Sexl) = /_OC d' (X1(-w)X (")) (4.12)
- %/OO dw’ {(a(w) +a' (-w)) (a'(—w’) + a(w’))). (4.13)

— 00

To find an analytical expression for this power spectral density, we must de-
termine a(w) and af(w). To do this we use the Hamiltonian of Eq. (2.18) in
the rotating wave quantum Langevin equation (Eq. (1.112)). We simplify the
problem by making one substantial approximation — that the intracavity op-
tical field is not affected by the motion of the mechanical oscillator (i.e., we
set go = 0). This may seem like an unreasonable approximation on the face
of it. However, it is appropriate as long as the optical cavity decay rate
is sufficiently large to remove the fluctuations introduced to the optical field
by the interaction with the mechanical oscillator. We will consider the case
where this is not true in Section 4.2.2, where we find that the approximation
is reasonable as long as k is large enough that the optomechanical system is
not operating within the strong coupling regime (i.e., K > g).

Returning to the problem at hand, setting go = 0 and taking the Fourier

6That is, the thermal occupancy if the coherent driving tone is displaced away.
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transform of the equation of motion for the intracavity optical field, we find

= \/E inlwW) = W )Qin \W
a(w) = /€/2+i(A—w)am( ) = Xopt(w)ain (w), (4.14)

where, in the same spirit as the mechanical susceptibility x(w), we have quan-
tified the frequency response of the optical cavity via the optical susceptibility

VR
Xoot (@) = T A =)

Substituting Eq. (4.14) into Eq. (4.13) and using the bath correlation re-
lations properties in Egs. (1.115a) and (1.115¢), which are valid for our model
of the optical bath since we have taken a rotating wave approximation, we
then find that

(4.15)

Sxx(w) = % iz [Xopt (—w)|” + (Aiz + 1) [xope(w)|*] - (4.16)

Exercise 4.3 Show this result.

It is notable that this optical amplitude quadrature spectral density is
asymmetric in frequency. As discussed in Section 1.2.3, this is a key signature
that the, in this case optical, bath is acting to heat or cool the mechanical
oscillator. Neglecting the coherent driving term at w = 0, which acts only to
statically displace the mechanical oscillator, we can now establish an analytical
expression for the optical force power spectral density of Eq. (4.11):

h2 92 B 9 B 9
Sryr (@) = == |z Popt(—w)* + iz +1) o @)] . (47)
zp

If the optical force is the only appreciable source of heating of the mechan-
ical oscillator and the mechanical oscillator has sufficiently high quality that
Sr, r, (w) is flat across the mechanical resonance, the equilibrium phonon oc-
cupancy 1y, and the optically induced mechanical decay rate I, can be deter-
mined by substitution of Eq. (4.17), respectively, into Egs. (1.54b) and (1.62).
Note that, since Eq. (1.54b) is a ratio of the power spectral densities at €2,
the prefactor in Eq. (4.17) plays no role in determining the equilibrium phonon
occupancy, with the occupancy determined solely by the characteristics of the
optical field. The results of these substitutions are

Lopt = 9% | Xont (D) = [Xopt (- (4.18a)
_ 9> - 2 - 2
Toope = g |1 [ope (O + (1 + 1) [Xope (-]

op

_ nr |X0pt(Q)|2 + (np +1) |X0pt(_Q)|2‘ (4.18D)

Xopt (D)* = [Xopt (=)

To understand these relations, it is worthwhile to consider three specific
scenarios:
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— If the optical driving field is on resonance (A = 0), |xopt(w)| =
|Xopt (—w)|, so that the optically induced mechanical decay rate I'opy = 0
and 7y opt = 00. Consistent with our observations from Section 3.2, in
this regime the optical field causes heating and does not affect the me-
chanical damping rate. Since, in our current model the mechanical os-
cillator is not directly coupled to any other bath, there is no mechanical
decay, so that the steady-state temperature is infinite.

— If the optical field is blue detuned (A < 0), |Xopt(—w)| > |Xopt(w)| s0O
that {T'opt, 76,0pt } < 0. In this case, each photon impinging on the opti-
cal cavity carries more energy than an intracavity photon. To enter the
cavity, a scattering process must occur whereby the mechanical oscilla-
tor takes up some of the photons’ energy (see Fig. 4.1). As a result, the
optical field coherently adds energy to the mechanical oscillator, pro-
viding gain (or negative damping) to its motion. Since the mechanical
oscillator has no other pathway to lose energy, its energy exponentially
grows. The fact that ny p¢ is negative in this situation can be under-
stood because the power spectral density of the optical bath that it is
coupled to increases with frequency — the opposite behaviour to that of
a system in thermal equilibrium. This results in an effective negative
temperature within the Boltzmann factor (see Eq. (1.54b)).

— If the optical field is red detuned (A > 0), |xopt(—w)| < |Xopt(w)| so
that {Topt, Mp.opt} > 0. This is the reverse situation to that discussed
above, with each incident optical photon carrying less energy than an
intracavity photon. As a result, scattering processes cause a net optical
damping of the mechanical oscillator, which then reaches a finite positive
equilibrium phonon occupancy.

We examine the last of these three scenarios in detail in what follows.
Figure 4.2 shows the optically induced mechanical damping rate I'yp¢ as
a function of detuning for a range of resolved sideband parameters /k. It
can be seen that, indeed, additional damping is introduced for A > 0, and
negative damping (or amplification) is introduced for A < 0. The maximum
damping/amplification occurs near detunings equal to A = +£Q.7 with the
range of frequencies that achieve effective damping/amplification narrowing
to small regions around these detunings as the resolved sideband factor Q/k
increases. This can be readily understood, because when A = 42 the scatter-
ing process that transfers energy between the optical field and the mechanical
oscillator is resonant (see Fig. 4.1). Taking this special resonant case while

"It should be noted that, while the vertical axis of Fig. 4.2 is normalised to the optome-
chanical coupling rate g, in practise for a fixed incident optical power g is a function of the
detuning A. As the detuning increases away from resonance for fixed incident power, the
intracavity phonon number, and therefore g, is reduced. Taking this into account, one finds
that, outside of the well-resolved sideband regime where Q/x > 1, the detuning at which
maximum optical damping/amplification occurs is shifted towards resonance (i.e., |A| < Q).
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FIGURE4.2 Optically induced mechanical damping rate 'y as a function
of cavity detuning A for resolved sideband ratios 2/xk = {1,2,10,100}
in order of least to most sharply peaked curve.

driving on the red (cooling) side of the optical resonance (A = ), we find

_ 4g2 K 21

A=Q

Fopt = 7 |:]. + (m) :| (419&)
“A— _ K\2, _ _

nbA,o_pgtz = nr+ (m) (2ng +1), (4.19b)

This is exactly the scenario we considered in Section 4.1, where we showed
that, with this detuning, the state of the optical field and mechanical oscillator
swap at the rate 2g. It is perhaps unsurprising, therefore, to find that this
results in cooling of the mechanical oscillator. We observe from Eq. (4.19b)
that, in the resolved sideband regime (rk < §2), the mechanical oscillator
equilibrates to the occupancy of the optical field (ﬁﬁozp? = ny,), with additional
deleterious heating introduced as the resolved sideband factor decreases. If
light is shot-noise limited (77 = 0), this additional heating introduces the

fundamental limit [191, 314]
_A— K\ 2
PA=Q = <E> (4.20)

on the mechanical occupancy. Thus we see that, somewhat surprisingly, even
when using an ideal minimum uncertainty coherent state to drive the optome-
chanical system, the presence of an optical cavity causes the optical field to
act like a nonzero temperature bath for the mechanical oscillator.
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4.2.1.1 Coupling to both optical and mechanical baths

In most scenarios, with the notable exception of laser trapped atoms, it is not
realistic to neglect the coupling of the mechanical oscillator to its mechanical
bath. In general, if the oscillator is coupled to two independent baths (labelled
A and B here), the total force power spectral density that it experiences is
simply

Srr(w) = Spp(w) + SEp(w). (4.21)
From Egs. (1.54b) and (1.62) the equilibrium phonon occupancy of the oscil-
lator is then just the weighted mean

_ Top\2 [ Shr(—Q) + SER(—Q)
— ZZP 4.22
e (h) { Ta+1lp (422)
—A _B
I'a+1'p

where ﬁ;:‘ and ﬁ{?, and I'4 and I'g, are the phonon occupancies and damp-
ing rates, respectively, that would be obtained if the baths were individually
coupled to the oscillator, as defined by Eqgs. (4.18a) and (4.18b).

Exercise 4.4 Show this result.

Substituting the optical and mechanical parameters from earlier ({na,np} —
{np,opt: 1}, {Ta, T} = {LTopt,I'}) into Eq. (4.23), it is then possible to ana-
lytically determine the equilibrium mechanical occupancy in the presence of
both optical and mechanical baths, remembering that the result is only valid
outside of the optomechanical strong coupling limit (specifically in the regime
where k < g).

Exercise 4.5 Derive the analytic expression for yourself. Show that on-
resonance optical driving (A = 0) heats the mechanical oscillator without
altering its decay rate and results in an equilibrium occupancy of

ny =n+ |Cegt| 2np + 1), (4.24)

where Cogr 18 the effective cooperativity defined in Eq. (3.13), consistent with
what we found in Section 3.2.

The equilibrium mechanical occupancy is plotted as a function of optical
detuning in Fig. 4.3 for a range of optomechanical cooperativities C'. As can be
seen, when |A| > Q the mechanical occupancy asymptotes to n as expected.
Net optical heating occurs for A < 0, with the system exhibiting instability
over the range of detunings for which I'ope + I' < 0. Net cooling beneath
the occupancy of the mechanical bath occurs for A > 0, and as expected is
strongly peaked near A = (). In this special resonant cooling regime (A = Q),
if the optical field is treated as a coherent state (ny = 0), we find that the
equilibrium occupancy is

_ 2 ,_
7y — n+ (k/4Q)° (0 —l—QC) (4.25)
1+C+ (k/492)




104 B Quantum optomechanics

10° :
J N

(W]

A/Q

FIGURE 4.3 Optical cooling and amplification of the motion of a mechan-
ical oscillator as a function of detuning A for various optomechanical
cooperativities. Here the mechanical bath occupancy is n = 10 and the
resolved sideband parameter 2/x = 10. The optomechanical cooperativ-
ity is C' = {0.5,50,5 x 103,5 x 10°} in order of the traces showing the
least to most cooling at A = 2. The thin horizontal line is the funda-
mental limit due to radiation pressure shot noise heating (Eq. (4.25)).
The light shaded region is the region of instability for C' > 5000 and the
dark shaded region is the region of instability for C' = 50.

In the limit where the resolved sideband factor (x/Q)? < {n/(7i+C),1+C},
this can be approximated as

n

=7 ol (4.26)
while in the alternative limit that the optomechanical cooperativity C' dom-
inates all other terms (C > {1 + (k/4Q)?,7[(4Q/K)? + 1]}) the mechanical
occupancy reaches the fundamental limit set by optical radiation pressure
heating given in Eq. (4.20).

In this textbook we will generally define being “close to the ground state”
as meaning np < 1. With this definition, we see that, in the first of the above
limits, the ground state can be approached for C' > n + 1. Interestingly, in
the limit that n > 1, this condition approaches the requirement we found
in Section 3.2 for the radiation pressure back-action heating of a mechani-
cal oscillator to equal n in the nonresolved sideband limit with on-resonance
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optical driving.® The significance of the condition in Section 3.2 is that once
C > n, a measurement on the output field of the optical cavity is able to
resolve the zero-point motion of the oscillator in a time shorter than the time
one phonon enters from the bath.? Here, a similar conclusion may be drawn.
When C > n + 1, the coherent cooling provided by the optomechanical inter-
action is able to extract the full n of occupancy from the mechanical oscillator
in a time that is short compared to the time within which one phonon enters
from the bath.

4.2.2 Resolved sideband regime

In the previous section, we derived the final temperature of a mechanical os-
cillator in the presence of both optical and mechanical bath forcing, under
the approximation that the optomechanical interaction introduces negligible
heating to the intracavity optical field. As we discussed, this approximation
is only valid if the optical decay rate x is sufficiently high that the energy
extracted from the mechanical oscillator does not remain in the optical cav-
ity long enough to couple back into the oscillator, i.e., when the optome-
chanical system is outside of the strong coupling regime (see Section 4.1).
In this section we use a quantum Langevin approach to include the effect of
this recycling of energy back into the mechanical oscillator, while taking the
ideal resolved sideband limit (x < €2) where direct radiation pressure heating
of the mechanical oscillator does not significantly raise its temperature (see
Egs. (4.20) and (4.26)). In the resolved sideband regime each intracavity pho-
ton on average remains in the cavity for longer than the mechanical period
and therefore interacts more or less equally with all quadratures of mechani-
cal motion. The interaction term in the Hamiltonian in Eq. (4.1) may then be
simplified by making a rotating wave approximation which neglects the fast
oscillating terms (ab and afb?). An alternative way to justify this assumption
is by considering the optomechanical energy level diagram in Fig. 4.1. It is
clear that the scattering processes described by ab and a'b are off-resonance
and therefore suppressed if k < ). With this approximation, the Hamiltonian
becomes

0 = hQala + hQbTb + hg (a'b + abl) . (4.27)

This is a beam splitter Hamiltonian which acts to swap excitations between
the mechanical oscillator and the optical field.

Exercise 4.6 Use the quantum Langevin equation given in Eq. (1.112) to find

8Tt should be noted that, while the conditions become identical in this limit, resolved
sideband cooling remains much more difficult to achieve in practise. One reason for this is
that radiation pressure heating can be achieved with an on-resonance optical drive, while
optomechanical cooling requires that the optical field is detuned. As a result, a higher inci-
dent optical power is required to achieve the same intracavity optical power (and therefore
the same C') in the case of optomechanical cooling.

9Therefore, requiring appreciable quantum back-action noise on the mechanical oscillator
to sustain the Heisenberg uncertainty principle.
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equations of motion for both a and b, valid within the rotating wave approx-
imation. Then solve these equations for b in the frequency domain, ignoring
transient boundary terms that arise due to the initial conditions, to obtain the
result

b(w) = Xob(0) bin (W) + Xba(9) ain(w), (4.28)

where 6 = Q — w s the offset frequency from the mechanical resonance fre-
quency, and

K2+
xw(®) = VT {(F/Q +8) (k)2 + 0) + 92} (4.292)

ig
Xea(d) = _\/E[(F/Q-i—ié) (m/2+i5)] (4.29D)

are the mechanical-bath-to-mechanical oscillator and optical-bath-to-mechanical
oscillator susceptibilities, respectively.

Equation (4.28) matches our intuition from the unitary approach to strong
optomechanical coupling considered in Section 4.1. b is a linear combination
of by, and a;,. The proportion arising from a;, is linearly proportional to g,
and the proportion arising from b;,, decreases with g. Hence, in the usual limit
where the optical bath occupancy is much lower than the mechanical bath
occupancy (ny, < n), the optomechanical coupling results in cooling.

For a stationary system, the mean occupancy of the mechanical mode can
be calculated from the frequency spectrum of b using Parseval’s theorem since

n, = (b)) (4.30)

~ lim 1 / " i epey) a (4.31)
T T /9

= %/_ St (w) dw (4.32)

- = O:O (B (@)b(')) d d, (4.33)

where in the first step we have evoked stationarity, in the second used Par-
seval’s theorem, and in the final step used the relation in Eq. (1.43). In the
reasonable case that the mechanical and optical baths are uncorrelated, we
then find that the mechanical occupancy is

Ty = % [n/oo Ixss(8)|% d6 + 7, /OO |Xba(5)|2d5] , (4.34)

— 00 — 00

where we have used the frequency domain version of the bath correlation prop-
erty in Eq. (1.115a), which is valid within the rotating wave approximation.

Exercise 4.7 In the limit of no optomechanical coupling (g = 0) confirm that
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x5 (0)|? is a Lorentzian centred around § = 0 (w = Q) with a width of T'. Then
show that, as should be expected, in this case the oscillator is equilibrated at
the temperature of its environment with ny = n.

It should be clear from inspection of Egs. (4.29) that, in general, |xp,(d)|?
and |xpa(6)|? are not Lorentzian. This means that, in general, once an optome-
chanical interaction is introduced, the mechanical oscillator can no longer be
thought of as an isolated mechanical oscillator in thermal equilibrium with
its environment. It is still possible, of course, to determine its occupancy via
Eq. (4.34). However, the integrals are not straightforward to solve analytically.
To simplify matters, henceforth we take the experimentally relevant limit that
the optical field is shot-noise limited so that ny = 0. In this case Eq. (4.34)
reduces to

i = o /_ (@) da (4.35)

To make progress in solving this integral, it is insightful to consider the char-
acteristics of |xp(0)|? as a function of the optomechanical coupling strength.
The thick lines in Fig. 4.4 show this. As can be seen, for low optomechani-
cal coupling strengths the form of |y, (8)|? appears to be Lorenzian-like. The
function broadens and decreases in amplitude as the optomechanical coupling
strength increases, and eventually splits into two peaks separated by 2g. As
discussed in Section 4.1, this splitting is a characteristic signature of strong
coupling between the intracavity optical field and the mechanical oscillator.
These observations motivate us to search for separate approximate forms of
Ixpp(0)|? that are accurate in the strong coupling regime where g > {I',k}
and in the complimentary weak coupling regime where {g,I'} < k. We would
note that, despite its name, the latter regime does not imply that radiation
pressure shot noise may be neglected. It can be seen from Eq. (3.19) that,
even in the weak coupling regime, radiation pressure shot noise can dominate
the heating of the mechanical oscillator.

Exercise 4.8 Convince yourself of this.

4.2.2.1 Weak coupling regime

Considering — in generality — a mechanical oscillator that has a decay rate I'
and is coupled to an optical field with rate g, it can be anticipated that the
energy of the oscillator will be predominantly confined to frequencies within
I' + g of the mechanical resonance frequency. This presumption leads to the
expectation that frequency components outside of the range |4| < T'+ g should
have little contribution to the integral in Eq. (4.35). In the weak coupling
regime where g < K, and assuming the usual situation where I' < &, this
leads to the conclusion that the only frequencies that contribute significantly
to the integral satisfy |§| < k. It is then possible to approximate Eq. (4.29a)
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FIGURE 4.4 Modification of the absolute-squared mechanical susceptibil-
ity (|xs(9)|?) due to resolved sideband cooling with varying optome-
chanical coupling strengths. Here I'/k = 0.01, and from top to bottom
g/k = {0,0.05,0.1,0.5,1,5}, or expressed in terms of the optomechan-
ical cooperativity C' = {0,1,4, 100,400, 1 x 10*}. The thick solid lines
are predicted from the full model (Eq. (4.29a)), the dotted lines are
predicted using the weak-coupling approximation (Eq. (4.37)), and the
dashed lines are using the strong coupling approximation (Eq. (4.40)).
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as

Xwl) ~ T 2?/& + i (4.36)

VT
T T2x(1+0)+id (4.37)

where C' is the usual optomechanical cooperativity of Eq. (3.14). This is,
indeed, a Lorenzian with an increased width of

I'=(1+0)T, (4.38)

and on-resonance peak height x4, (0) reduced compared to the bare mechanical
oscillator by a factor of 1 + C.

Exercise 4.9 Show that the optical contribution to T in Eq. (4.38) agrees
with Eq. (4.19a) in the very good cavity limit (k < ).

Equation (4.37) is illustrated by the dotted lines in Fig. 4.4. In the weak
coupling regime the agreement with the full mechanical susceptibility is near
perfect, with major discrepancies becoming evident as the strong coupling
regime is approached.

Applying this result for yp,(d) into Eq. (4.35), we find that the mean
mechanical occupancy for resolved sideband cooling in the weak coupling limit
is

n
ny = , 4.39
=T (4.39)
This expression is identical to the result we found earlier (Eq. (4.26)) when
neglecting both mechanical heating of the optical field and radiation pressure

heating of the mechanical oscillator.

4.2.2.2 Strong coupling regime

As discussed earlier, as the strong coupling regime is approached the me-
chanical phonon number spectrum characterised by xu,(0) starts to take on
the appearance of a double-peaked Lorenzian (see Figs. 4.4 and 4.6). Each
of the peaks represents one of the pair of hybridised optomechanical modes
described in Section 4.1. We know from Section 4.1 that the separation of the
peaks should equal 2g. In the weak coupling regime the decay of the cavity
field is fast compared to the optomechanical coupling rate (¢ < k) such that
the heat transfer from the mechanical oscillator into the optical environment
is rate-limited by g. Here, on the other hand, since g > &, the exact opposite
is true, with the rate of heat transfer limit by . As a result, one should expect
the linewidths of the hybrid modes to be determined by s and I' rather than
g. This leads to the conclusion that frequency components in the mechanical
power spectrum that are outside of the ranges |0 £ g| < T+ & should not con-
tribute appreciably to the mechanical occupancy. Using the strong coupling
criterion g > {k,I'}, this can be rewritten in the relaxed form |0 £+ ¢g| < g.
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Returning to the general form of the susceptibility in Eq. (4.29a), and
utilising the approximations outlined in the previous paragraph, we find after
some work that in the strong coupling regime |xp(0)|? is well approximated
by

2 r/4 r/4
Ixeo(0)|” = Y T e . (4.40)
(555) +0+9? (%) +0-9)

Exercise 4.10 Show this for yourself.

This function is represented by the dashed lines in Fig. 4.4, showing good
agreement with the full absolute-squared mechanical susceptibility in the
strong coupling regime close to the hybrid modes resonance frequencies, and,
as should be expected, poor agreement in the weak coupling regime. Unlike the
weak measurement regime, here both the height and shape of the Lorenzian
peaks are independent of g. Furthermore, since the absolute-squared suscepti-
bility, and therefore the mechanical power spectrum, is not a single Lorenzian,
the mechanical oscillator cannot be thought of simply as a single oscillator cou-
pled to a bath in thermal equilibrium. Each hybrid optomechanical mode can,
however, be thought of in this way.
As can be seen from Eq. (4.40), the width of each Lorenzian is

I'+ &

I’ = . 4.41
- (441)

This is exactly the usual result for a pair of strongly coupled oscillators: the de-
cay rate of the hybrid modes is the average of the uncoupled decay rates since
the energy of each hybrid mode is shared equally between the two oscillators.

Compared with the peak of the bare amplitude-squared mechanical sus-
ceptibility when no optomechanical coupling is present, the peak of each of
the two Lorenzians in Eq. (4.40) is reduced by the fraction

(8 % g)I N( I )2'

2 ~~
X6 (0)] =0 I'+x

(4.42)

Evidently, this ratio, and consequently the level of mechanical cooling, criti-
cally depends on the ratio of mechanical to optical decay rates.

Similarly to the weak coupling regime, integrating Eq. (4.42) over § yields
the occupancy of the mechanical mode in the strong coupling limit, with the

result - -
ny, = n ~n|— 4.43
np=n (F n ﬁ) n (H) , (4.43)

where the approximate solution is valid in the realistic scenario that the optical
cavity decays much faster than the mechanical oscillator (x > T"). We see that,
within the strong coupling regime, the final equilibrium occupancy is simply
equal to the mechanical bath occupancy suppressed by the ratio of mechanical
to optical decay rates.
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4.2.2.3 Mechanical occupancy achieved via resolved sideband cooling in the
rotating wave approximation

Figure 4.5 provides an example of the reduction in phonon occupancy achieved
by resolved sideband cooling in the rotating wave approximation and compares
the full numerical integration of Eq. (4.35) with the weak and strong coupling
approximations derived in the previous two subsections. As can be seen, good
agreement is achieved in the regimes of validity of each model.

FIGURE 4.5 Final mechanical occupancy achieved with resolved sideband
cooling in the rotating wave approximation. Here we set I'/k = 0.01. The
dotted and dashed lines are the predictions when using the additional
weak (Eq. (4.39)) and strong (Eq. (4.43)) coupling approximations, re-
spectively.

4.2.2.4 Approaching the ground state

Optomechanical cooling is a commonly used technique in atom and ion trap-
ping experiments, where operation in the resolved sideband regime routinely
enables cooling to the ground state as an initialisation step for experiments in
quantum computing and quantum information science [86, 202, 176]. Doppler
cooling, on the other hand, is analogous to cavity optomechanical cooling in
the nonresolved sideband regime [154].
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Optomechanical cooling of a macroscopic mechanical oscillator was first
reported in the microwave frequency domain by Braginskii, Manukin, and
Tikhonov in 1970, using a radio frequency waveguide resonator with one end
consisting of a metal plate suspended on a quartz fibre [38]. The resolved
sideband regime was achieved in 1995 using microwave driving and readout
of a superconducting high-@) niobium resonant mass gravitational wave an-
tenna [31, 83].

In the optical domain, passive radiation pressure cooling was observed in
2006 [16, 120, 250] in three different microcavity architectures,!® and the re-
solved sideband regime was achieved in 2008 using both microtoroidal and
microsphere optomechanical systems [251, 218]. Figure 4.6 shows a resolved
sideband cooling experiment performed using a microtoroidal optomechan-
ical system [295], which clearly shows the hybridisation of the optical and
mechanical modes that occurs within the strong coupling regime.

From Eqgs. (4.20), (4.39), and (4.43), one can see that there are three
requirements to approach the ground state via resolved sideband cooling

_ g°
' < k< {Q, Fﬁ} . (4.44)
The first requirement arises because the optical cavity decay rate presents
a bottleneck on how fast heat can leave the system, the second comes from
heating due to the off-resonant fast rotating terms in the Hamiltonian, and
the third is a condition on the required strength of optomechanical coupling.
Resolved sideband cooling experiments that approached the ground state
(np < 1) were first achieved in 2011, both using a photonic-phononic crystal
architecture [66] and using a superconducting lumped element electromechan-
ical system [280].

4.2.2.5 Thermodynamical understanding of optical cooling

In Section 4.2.1.1 we found that the steady-state phonon occupancy of an os-
cillator coupled to two baths equilibrates to a mean of the occupancies of the
baths, weighted by the respective coupling rates to each bath (see Eq. (4.23)).
This provides an alternative way to think about — and to derive — the optome-
chanical cooling results from Sections 4.2.2.1 and 4.2.2.2, requiring only the
appropriate choice of bath occupancies and system-bath coupling rates. The
mechanical oscillator is, of course, coupled to both a hot bath (its environment)
with phonon occupancy n and a coupling rate I', and a cold bath (the optical
field). We showed in Section 4.2.1 that, if the optical driving field is in a coher-
ent state, the effective phonon occupancy of the cold bath approaches zero (see
Eq. (4.20)) in the well-resolved sideband regime (k < ). All that remains

10Note that we use the term “passive radiation pressure cooling” here to distinguish this
work from feedback cooling where the position of the mechanical oscillator is measured and
active feedback forces are then applied to the mechanical oscillator. Feedback cooling is
introduced in Chapter 5.
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FIGURE 4.6 Observation of optomechanical cooling and quantum-
coherent coupling. Adapted by permission from Macmillan Publishers
Ltd: Nature [295], copyright 2012. Note that here 2y, and € respectively
denote the mechanical resonance and optical sideband frequencies. (a)
Mechanical occupancy (termed n here) as a function of detuning A (our
—A). Inset: microtoroidal optomechanical system. (b) Mechanical power
spectral density observed on output optical field showing the avoided
crossing characteristic of strong coupling. The dip at exactly A = —Q
shown in Fig. 4.4 for strong hybridisation is not observed here because
the optical field probes the mechanical position spectral density, rather
than the phonon number power spectral density.
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to determine the occupancy of the mechanical oscillator in the well-resolved
sideband regime is to determine the coupling rate between the mechanical
oscillator and the optical bath. As we showed in Sections 4.2.2.1 and 4.2.2.2,
this coupling rate is different in the weak and strong coupling regimes, with
the optical cavity decay rate introducing a bottle-neck in the latter case.

Let us first consider the weak coupling regime, where the heat introduced
to the intracavity optical field from the mechanical oscillator decays out of the
cavity sufficiently fast to prevent the possibility of reheating the mechanics. In
this regime, we can determine the coupling rate of the mechanical excitation
into the optical cold bath by inspection of x4,(6). We found in Section 4.2.2.1
that, in the weak coupling regime, this is well approximated by the Lorenzian
given in Eq. (4.36). We can immediately see from this expression that the
effect of the optical field is to introduce a second decay channel with decay
rate 102

Topt = —2. (4.45)

K

It is worth commenting that this rate is identical to the rate p = 4¢g?/k that
information about the mechanical position is encoded on the output optical
field in the nonresolved sideband limit which we identified in Section 3.3.
Using this rate, along with the other parameters defined above, in Eq. (4.23)
we exactly reproduce Eq. (4.39) for n;, from Section 4.2.2.1 in the well sideband
resolved weak coupling regime.

In Section 4.2.2.2 we found that, in the strong coupling regime, the cou-
pling rate between the mechanical oscillator and the optical bath is

Topt = K. (4.46)

This can be understood since, in this regime, energy is exchanged back and
forth between the cavity field and the mechanical oscillator until it eventually
decays out of the cavity into the optical environment at rate . Using this

rate in Eq. (4.23), we immediately retrieve the same steady-state occupancy
as we derived in Section 4.2.2.2 (Eq. (4.43)).

4.3  OPTOMECHANICALLY INDUCED TRANSPARENCY

We have now seen how red detuning of the optical drive field to an optome-
chanical system can enable mechanical cooling. More complicated protocols
are possible by using multiple optical drive fields. Optomechanically induced
transparency is one prominent example [4, 309, 246]. Optomechanically in-
duced transparency is analogous to electromagnetically induced transparency
(EIT), which allows the absorption spectrum and dispersion of ensembles of
atoms to be engineered and is an important tool for quantum memories and
repeaters [104]. Just as in EIT, in optomechanically induced transparency two
laser fields are injected into the optical cavity, a weak probe field at a frequency
near the optical resonance frequency, and a strong control field. The control
field is red detuned by the mechanical frequency in the same manner as the
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FIGURE 4.7 Energy level diagram for optomechanically induced trans-
parency showing the control and probe optical tones at frequencies
Qeontrol and probe, Tespectively. Similarly to Fig. 4.1 for optomechan-
ical cooling, |n, m) represents an n-phonon, m-photon state.

cooling field in resolved sideband cooling. This pump-probe scheme is illus-
trated in the energy level diagram shown in Fig. 4.7 and allows a similar level
of control over the absorption and dispersion of optical fields as EIT.

4.3.1 Hamiltonian

It is most convenient to solve for the dynamics of optomechanically induced
transparency in the interaction picture at the cavity resonance frequency, such
that A = 0. Starting with the standard general optomechanical Hamiltonian
of Eq. (2.18) within a rotating frame for the optical field, we then have

H = rQb'b + higoa'a (b7 +1) . (4.47)

Treating the control field as classical and much brighter than the probe field,
this Hamiltonian may be linearised using a similar approach to that which we
followed in Section 2.7.

We begin by reexpressing the annihilation operator a as

a — a+ ae®M, (4.48)

where the first term constitutes the quantum fluctuations and any coherent
contribution from the probe field,!! while the second term represents the co-

HYWhich must be small compared with .
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herent control tone which, in the same manner as the drive tone in resolved
sideband cooling treated earlier, is red detuned from the cavity by the me-
chanical resonance frequency 2. The term a'a in the Hamiltonian (Eq. (4.47))
can then be expanded as

ada — o®+da+a [aTemt + ae‘mt} (4.49)

~ [aTemt + ae‘mt] .

Here we have neglected the constant o term, which, as we saw in Section 2.7,
introduces a constant term in the Hamiltonian as well as a static displacement
to the mechanical oscillator that has no effect on the dynamics of the system.
We have also neglected the a'a term in the usual linearisation approximation,
with the probe field and vacuum optomechanical coupling rate gy assumed to
be sufficiently weak so that this term does not appreciably affect the system
dynamics. Substituting this expression into the Hamiltonian, we arrive at

A

H = hb'b+ hg[ae™ +ae™ ] (b7 +b) (4.51)
~ Kb+ hg [abTe_im + aTbemt] ) (4.52)

where, similar to our previous treatment of resolved sideband cooling, in the
approximation we have neglected terms that are not resonant and are there-
fore suppressed in the resolved sideband limit (see Fig. 4.7). Apart from the
explicit time dependence, this Hamiltonian is very similar to the Hamiltonian
for resolved sideband cooling given in Eq. (4.27). The oscillation in time is
crucial for the operation of optomechanically induced transparency and can
be thought of experimentally as a beating between the probe and control fields
that causes near DC fluctuations in the probe to be mixed up to the mechan-
ical resonance frequency and thereby to strongly interact with the mechanical
oscillator. In optomechanically induced transparency probe excitations are
converted to mechanical oscillations and then back into the probe field again.
The essential idea is to set up a perfect destructive interference between the
intracavity probe field and the fluctuations it drives onto the mechanics when
they return to the cavity. Thereby, the probe field cannot exist in the cavity,
and the cavity becomes transparent.

4.3.2 Optomechanically induced absorption

We begin our treatment of optomechanically induced transparency by consid-
ering the open system dynamics of a single-sided optomechanical system — that
is, one that has only a single optical input/output channel (see Fig. 4.8 (left)).
This turns out to enable optomechanically induced absorption but not trans-
parency. In Section 4.3.3, we will extend the treatment to a double-sided op-
tomechanical system which does exhibit transparency. Similar to our approach
to resolved sideband cooling in Section 4.2.2, within the regime of validity of
the rotating wave approximation Eq. (1.112) may be used to obtain the equa-
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FIGURE 4.8 Optomechanically induced absorption in a single-sided op-
tomechanical system. Left: Experimental schematic. Right: Modelled
transmissivity 7'(w) as a function of frequency w for optomechanical co-
operativities of C'= {0.1,0.4, 1,4, 10} from top to bottom, and x = 10T.

tions of motion

a = —ga — ighe™ + \/rai, (4.53)
. T .
b o= —gb—i- igae” Y% 4+ /Thy, (4.54)

for the intracavity optical field and mechanical oscillator.

Exercise 4.11 Solve these equations of motion in the frequency domain to
show that in the steady state

a(w) = Xaa(W)ain (W) + Xab(W)bin (w + Q), (4.55)

where Xaa(w) and xa(w) are the light-to-light and mechanical oscillator-to-
light susceptibilities

2

Xaa(w) = VK F —i 97.}_1 (4.56a)

2 YT TR i

. 2 —1
19 K . g
= V| =—"—+)|=— _— . 4.56b
Xab(w) \/_<F/2—iw) {2 wH_F/Z—z’w} (4.56b)
As can be seen, the light-to-light susceptibility is modified from the usual
Lorentzian describing a bare optical resonance, whilst the presence of the
mechanical oscillator introduces a second input noise term in the equation,
driving the intracavity optical field.



118 B Quantum optomechanics

4.3.2.1 Output field

The output field from the system can be found using the general input-output
relation of Eq. (1.125) with the result

Aout = t(w)ain(w) + {(w)bin(w + Q), (4.57)

where
tw) = 1—vVEXaa(w) (4.58a)
lw) = —VEXa(w). (4.58D)

Here t(w) is a complex frequency-dependent transmission coefficient that
quantifies the fraction of the incident field that remains in the output field of
the optomechanical system, while I(w) quantifies the fraction of the mechan-
ical bath fluctuations that are imprinted onto the output field. As we found
in Section 4.2.2, in the resolved sideband regime with a strong drive field that
is red detuned to A = 2, the optomechanical interaction is of the form of a
beam splitter, or equivalently a two-mode linear scattering interaction. From
this perspective t(w) and [(w) can be thought of as scattering amplitudes,
with [(w) not only quantifying the level of mechanical fluctuations imprinted
on the output field, but also the loss (or absorption) of the optical field by the
mechanical bath — i.e., it is a frequency-dependent loss coefficient.

Exercise 4.12 Show that the optomechanical scattering process is energy con-
serving, with
T(w)+ L(w) =1, (4.59)

where the transmissivity T (w) and absorptivity L(w) are defined as T'(w) =
t(w)]* and L(w) = |l(w)|*. Show that, in the limit w < k, the absorptivity is
given by the Lorentzian

CT?
L+ OP(T/27 + a2

L(w) = (4.60)

where, as usual, C = 4¢°/k is the optomechanical cooperativity.

As the above exercise demonstrates, in this configuration the optomechanical
system is acting as an optical absorber, with peak absorption at sideband
frequencies that are close to €2 higher than the coherent drive frequency (i.e.,
near w = 0). In the previous section we examined the effect of the optical
field on the mechanical oscillator when a red-detuned coherent drive tone is
applied, showing that cooling occurs due to (cold) optical fluctuations being
transferred onto the oscillator. Here we see the complimentary effect on the
optical field from the same process, with the mechanical oscillator absorbing
optical energy. The absorptive feature is Lorenzian with a width (1 + C)I'
matching the optomechanically broadened mechanical linewidth of resolved
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sideband cooling in the weak coupling regime (Eq. (4.38)), and exhibits a
peak absorption of 4C'/(1+ C)? when w = 0.

The transmissivity 7T'(w) of this optomechanical absorber is plotted as a
function of frequency in Fig. 4.8 (right) for a range of optomechanical coop-
erativities. One observation that can be made from this figure is that, in the
special case of C' = 1, the optical field is perfectly absorbed by the mechanical
oscillator at w = 0. Note that this does not imply that this choice of coopera-
tivity allows the mechanical oscillator to be cooled to its ground state. As we
saw in the previous section, significantly more stringent requirements must be
satisfied to achieve this (see Eq. 4.44).

4.3.3 Optomechanically induced transparency using a double-sided op-
tical cavity

In the case of a single-sided cavity considered in the previous section, when
there is no optomechanical interaction (¢ = C' = 0) energy conservation re-
quires that the transmissivity 7' (w) = 1 for all sideband frequencies.

Exercise 4.13 Confirm that this is the case from Eq. (4.58a).

Consequently, in this single-sided configuration it is clearly not possible for
the optomechanical interaction to enhance the transmissivity as required for
optomechanically induced transparency. This motivates us to consider the case
of a double-sided cavity as depicted in Fig. 4.9 (left). We envision that the
cavity decay occurs through two optical ports with decay rates of k1 and ko,
respectively, though one of these ports may in fact arise due to optical losses
and therefore not be readily accessible to the experimenter. The total cavity
decay rate is then kK = k1 + k2. While the broad features of optomechanically
induced transparency are evident for any choice of decay rates, we choose to
consider a balanced two-sided cavity here, with k1 = k2 = k/2. This has the
advantage that, without optomechanical interaction, the optical field is fully
impedance matched into the cavity through one input/output port, and out
through the other input/output port.

For a balanced two-sided cavity, the input optical field of Eq. (4.57) has
equal contributions from both optical ports so that

Qin,1 + QAin,2

V2

Exercise 4.14 Substituting this into Eq. (4.55) and using the input-output
relations of Eq. (1.125), show that the two output fields are

(4.61)

Ain =

a1,out = t(w)ay in(w) + r(w)ag,in(w) + L(w)bin (w + Q) (4.62a)
a2 out = t(w)a27in(w) + T(w)al,in(w> + l(w)bin(w + Q), (462b)
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where now
t(w) = 1_§Xaa(w) (463&)
T<w) = _§Xaa(w) (463]3)
l(w) = _\/g)(ab(w), (4.63c)

with r(w) being a complez frequency-dependent reflection coefficient describing
the coupling from one optical field to the other.
Confirm that, analogously to the case of a single-sided optical cavity, energy
s conserved with
T(w) 4+ R(w) + L(w) =1, (4.64)

where the reflectivity R(w) is defined as R(w) = |r(w)]>.

In the limit w < & the transmissivity 7'(w) of this two-sided optomechan-
ical system is well approximated by the Lorenzian

C2(r/2)?

T = G5 ormpE e (4.65)
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FIGURE 4.9 Optomechanically induced transparency in a double-sided
optomechanical system. Left: Experimental schematic. Right: Modelled
transmissivity 7'(w) (left column) and reflectivity R(w) (right column)
as a function of frequency w for optomechanical cooperativities of
C' ={0.1,0.4,1,4,10} from top to bottom, and x = 50T".
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which is quite similar in form to the absorption spectrum in the single-sided
case (Eq. (4.60)). We see that, when there is no optomechanical interaction
(C = 0), the optomechanical system has no on-resonance (w = 0) trans-
mission. As the interaction strength increases, a transparency window now
appears with peak transmissivity of 7(0) = C?/(1 + C)? and width equal
to the resolved sideband cooled mechanical linewidth (1 4+ C')I'. Asymptoti-
cally, at C' — oo the on-resonance transmissivity approaches unity; while at
C = 1 the optomechanical system acts as a balanced but lossy beam split-
ter with 7(0) = R(0) = 1/4 and L(0) = 1/2. This behaviour is shown in
Fig. 4.9 (right).

4.3.3.1 Noise performance

From the above observations it should now be clear that, in the linearised
regime with coherent driving on the red sideband, a cavity optomechanical
system acts as a tuneable beam splitter between the incident optical cavity
fields and the mechanical bath fluctuations, with a sharp spectral response
dependent on the mechanical decay rate and optomechanical cooperativity. It
is interesting to ask what conditions are required for the fluctuations intro-
duced by the mechanical oscillator to be negligible, such that the oscillator
acts only as a sort of controllable noise-free valve connecting the two fields.
Assuming that the input optical fields are both in coherent states and the
mechanical bath is, as usual, in a thermal state with occupancy n, the power
spectral density of an arbitrary quadrature X fput of output field 1 can be
easily shown using Egs. (1.43), (1.118a), and (4.62) to be

T(w) , Rw)

(w) = 2 4 2 L L)+ 1/2), (4.66)

S
X1 2 2

1,out

X9

1,out

with an identical result for output field 2, where we have neglected the coherent
peak from each optical field at w = 0. Making use of Eq. (4.64) we find the
condition on the absorptivity

1/2
i+ 1

Lw) < (4.67)
for the first two (optical) terms to dominate the last (mechanical) term. This
regime can be achieved in both the high and low cooperativity limits. In
the more interesting high cooperativity limit (C' > 1), for instance, the on-
resonance absorptivity is L(0) = 2/C and the condition becomes C' > 4(n+1),
which is a similar criterion as that to achieve ground state cooling in the weak
coupling sideband-resolved regime (second inequality in Eq. (4.44)). If this
condition is satisfied, the effect of the optomechanical interaction is to modify
the optical susceptibility, creating a sharp transparency feature that — at least
on-resonance — switches the output optical fields of the system without adding
any appreciable fluctuations from the mechanical bath.

While the treatment in this section is only valid in the linearised regime, we
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introduce single-photon optomechanical beam splitters which operate in the
nonlinearisable single-photon strong coupling regime in Sections 6.3 and 6.4.

4.3.3.2 Experimental implementation

Optomechanically induced transparency has been experimentally demon-
strated in a range of different architectures. It was first achieved in a mi-
crotoroidal optomechanical system [309]. Figure 4.10 shows the experimental
apparatus, the overused transparency window, and resulting broadening and
deepening of the transparency as a function of optomechanical cooperativ-
ity. One particularly remarkable feature of optomechanically induced trans-
parency is demonstrated here. While a typical microcavity might have a reso-
nance linewidth of megahertz or gigahertz, a typical micromechanical oscilla-
tor has a linewidth in the range of millihertz to kilahertz. The optomechanical
transparency allows these ultra narrow linewidths to be mapped onto an opti-
cal field (see the exceptionally sharp transparency feature in Fig. 4.10b). One
proposed application of such a sharp resonance is to apply a strongly frequency
dependent rotation to squeezed light so that it can be used to exceed the stan-
dard quantum limit of the measurement of mechanical motion over a broad
frequency band [185, 233] (we discuss this concept further in Section 5.4.2). It
has proved practically difficult to achieve such rotations through other means.

4.4 OPTOMECHANICAL ENTANGLEMENT

In the previous two sections we considered the scenario where the optical
field was red detuned from the optical resonance frequency, showing that this
results in cooling of the mechanical oscillator and can be used to facilitate an
optomechanically induced transparency for the optical field. It is interesting
to consider the opposite regime where the optical field is blue detuned. Here,
each incident photon carries more energy than an intracavity photon. When
photons enter the cavity, the additional energy is taken up by the mechanical
oscillator. One might initially imagine that this process would be undesirable,
acting only to heat the mechanical oscillator. However, this is not the case.
In fact it acts to correlate the intracavity field and the mechanical oscillator
and ultimately generate entanglement between them, which is the topic of this
section.

A wide range of theoretical studies have been performed on optome-
chanical entanglement, with some of the earlier seminal works includ-
ing [35, 188, 333, 299, 301, 116]. It was first experimentally demonstrated
for a lumped element superconducting microwave optomechanical system in
2013 [217] (see Fig. 4.16).
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FIGURE 4.10 Experimental demonstration of optomechanically induced
transparency. From [309]. Reprinted with permission from AAAS. (a)
Microtoroidal optomechanical system showing probe and control fields.
(b) Theoretical model of probe transmission as a function of frequency.
(c) Observed homodyne signal showing a sharp dip near the mechanical
resonance frequency, which in this configuration is evidence of an in-
creased probe transmission at that frequency. (d) Width of transparency
window as a function of laser power.

4.4.1 Hamiltonian and equations of motion

Similarly to our treatment of resolved sideband cooling in Section 4.2.2, for
simplicity we consider the resolved sideband limit where x < €. In Sec-
tion 4.2.2, this limit allowed us to apply a rotating wave approximation and
neglect the off-resonant ab and a'b’ terms in the Hamiltonian of Eq. (4.1),
resulting in a beam splitter-like Hamiltonian between a and b. Here we choose



124 B Quantum optomechanics

a blue detuning of A = —Q rather than red detuning, so that these terms
are resonant (consider the energy level diagram in Fig. 4.1), and the ab' and
a'b terms are off-resonant. Neglecting the off-resonant terms, in an interaction
picture with the optical field and mechanical oscillator rotating at the cav-
ity and mechanical resonance frequencies, respectively, the optomechanical
Hamiltonian of Eq. (4.1) then becomes

I = hg (ab+a'd"). (4.68)

The effect of this Hamiltonian is immediately apparent — it is the Hamiltonian
of a parametric interaction that generates (or annihilates) correlated photon-
phonon pairs. It may appear that pair production of this kind would violate
energy conservation. Indeed, unlike the case of a beam splitter, this Hamil-
tonian is not energy conserving in its own right, with the energy required to
generate photon-phonon pairs derived from the coherent optical drive field.
Parametric processes are the fundamental processes behind all forms of bipar-
tite Gaussian entanglement. The ability to tune between beam splitter and
parametric interactions via detuning is a particularly useful tool to control
the physics of optomechanical systems.

The rotating wave quantum Langevin equation of Eq. (1.112) can be used,
as usual, to arrive at equations of motion for the evolution of the intracavity
field and mechanical oscillator:

a=igbl — ga + VKain (4.69a)

: r
b=igal — Zb+ VThiy. (4.69b)

4.4.2 Bogoliubov modes

While the equations of motion in Eq. (4.69) can be straightforwardly solved
by taking the Fourier transform and solving simultaneously, it is instructive
to instead first diagonalise them.

Exercise 4.15 Show that substitution of a and b in terms of

1 1
—— 7 (im+ ;bT) (4.70a)
ct = L (la—kirbT) (4.70Db)
V2 \r

diagonalises Eqs. (4.69), with the resulting uncoupled equations of motion

given by
- 1 /T
o = _%C_-f-z’m/gain—l-;\/—bgn (4.71a)
¢to= —7+c+—|—1\/ga~ —|—ir\/FbT (4.71b)
2 ry 2" m '
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with
5 1/2
1 k—1 k—T
- 442 4.79
, 292+¢<2)+g (4.726)
T —T\?
VE = “‘5 ;\/(“2 > +4g2. (4.72b)

This transformation to modes ¢t is a form of two-mode Bogoliubov trans-
formation, used by Nickolai Bogoliubov to study the physics of superfluity
and superconductivity [34]. Note that here c¢* are not bosonic modes. From
Egs. (4.70) we find that ¢* and ¢T do not commute with each other:

(=, cF1] = £, (4.73)
while L
[ci,ciT] = i§ (r_2 - r2> . (4.74)

It is apparent from this second commutation relation that each operator com-
mutes with its own conjugate for the special case of » = 1, so that, for any
arbitrary functions f and h, [f(cT,ct1), h(ct,ctT)] = 0. We therefore see
that, unlike the usual boson annihilation and creation operators, for r = 1
there exists no Heisenberg uncertainty principle between the quadratures

S L GO .
A o Z _ N\ =1 1 5 A
o= (et :E(XL—YM>, (4.75D)

where X s and Yj; are mechanical quadrature operators (see Egs. (1.135)) ro-
tating at the mechanical resonance frequency €2, which we term the mechanical
position quadrature and the mechanical momentum quadrature, respectively,'?
and we have introduced the subscript L to clearly distinguish the quadratures
of the intracavity optical field from those of the mechanical oscillator.

Exercise 4.16 Determine the equivalent of Eqs. (4.75) for the quadratures
XF=(ctT+ch)/V2 and Y =i(ctt —c¢t)/V2.

We see from Eqgs. (4.75) and the commutation relation (X7, V] '= "= 0 that
X can in principle be perfectly correlated to YL, while s1mu1taneous perfect
correlations exist between X 1, and YM This is the essential feature of two-
mode Gaussian entanglement [237] and demonstrates the role that Bogoliubov
modes play in understanding such entanglement.

12Note that the appearance of mechanical quadrature operators here, rather than the
dimensionless position Q and momentum P arises because — unlike our approach in previous
parts of the textbook — in the Hamiltonian of Eq. (4.68) we have moved into an interaction
picture for the mechanical oscillator rotating at €.
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From Eq. (4.72b) it is apparent that each of the modes c¢* decay at different
rates that depend on k, T, and g, with ¢~ (¢) decaying faster (slower) than
the mean of the optical and mechanical decay rates. Some straightforward
algebra shows that v is negative for C > 1 where, as usual, C is the optome-
chanical cooperativity. C' = 1 therefore constitutes a threshold for instability,
above which ¢t grows exponentially as a result of the optomechanical inter-
action, never reaching a steady state. This is an example of parametric insta-
bility [159, 61]. While this exponential growth can, in principle, be stabilised
— for instance, using feedback [134] or a secondary optical cooling tone [231] —
or mitigated by using short optical pulses [217], here we restrict our analysis
to the intrinsically stable regime where C' < 1.

4.4.3 Optical and mechanical modes in the stable regime

Taking the Fourier transform of Eqs. (4.71), we arrive at uncoupled equations
of motion for ¢*(w) at steady state in the stable regime

@ = (=) :z'r\/gainww}\ﬁbfn(—w)
) = (W%zw) _%\/gain(w)ﬂr\ﬁbfn(—w

Using Eqs. (4.70), the frequency domain annihilation operators for the intra-
cavity optical field and mechanical oscillator can then be directly obtained.
Expressed in terms of quadrature operators, they are

(4.76a)

(4.76b)

Xpw) = Xaa@)XLin(@) + Xab(@)Var,in (@) (4.77a)

V(W) = Xaa(@)Yiin(@) + Xab(w) X arin (@) (4.77b)

Xnw) = xob(@) Xarin(@) + Xpa (@) Vi in (@) (4.77¢)

Yiur(w) = xop(@)Yazin (@) + Xba (@) X1 in (@), (4.77d)

where the susceptibilities x;;(w) are

VE([T/2 —iw)

Xaa(w) (/2 —iw) (I'/2 —iw) — ¢? (4.782)
B VT (k)2 — iw)

@) = ) T2 —iw) — g (4.78b)

_ gvT .

Xaol@) = Ty (T2 ) — (4.78¢)

Xba(w) = gV/x (4.78d)

(k/2 —

iw) (T/2 —iw) — g2

Exercise 4.17 Derive these expressions.
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4.4.4 Einstein—Podolsky—Rosen entanglement

Gaussian two-mode entanglement, as produced by the linearised optomechan-
ical interaction, was first considered by Einstein, Podolsky, and Rosen in
1935 [100]. They considered two quantum particles A and B described by
the wave function

Yap(xa,zp) = /eip(“_”)/hdp. (4.79)

Since it is not possible to write this wave function in a product form
Ya(ra)vp(xzp), the state is inseparable and subsystems A and B are en-
tangled. Einstein, Podolsky, and Rosen were particularly interested in the
correlations exhibited between the particles with this wave function and the
implications of these correlations on our understanding of quantum mechanics.
They recognised that a perfect measurement of z 4 with result x4 will collapse
the state of particle B into the position eigenstate ¥pja(zp) = d(x4); while
similarly, a perfect momentum measurement collapses particle B into the mo-
mentum eigenstate. Since subsystems A and B can in general be space-like
separated,!3 the ability to predict both the position and momentum of particle
B with perfect precision using different measurements on particle A introduces
a conflict between quantum mechanics and local realism — either wave func-
tion collapse must occur faster than the speed of light or the position and
momentum of particle B must exist with less indeterminism than required by
the Heisenberg uncertainty principle. This apparent paradox is now referred
to as the Einstein—Podolsky—Rosen paradoz.

The perfect Einstein—Podolsky—Rosen state exhibits perfectly correlated
position and momentum quadratures, such that

<XA(t) YV (t)> —0 (4.80a)
<1?A(t) ~ X5 (t)> — 0, (4.80D)

where we have rotated the correlations compared to the previous paragraph
such that they occur between position and momentum quadratures since, as
we found in the previous section, this is the form of correlation generated by
the optomechanical interaction. We see that, for a perfect Einstein—Podolsky—
Rosen state, a noise-free measurement of the momentum quadrature of B
collapses A into a position eigenstate, while similarly a noise-free measurement
of the position quadrature of B collapses A into a momentum eigenstate.

By inspection of Egs. (4.77), we can immediately observe that the optome-
chanical interaction produces correlations of a form similar to what would be
expected for an ideal Einstein—Podolsky—Rosen state, but that the correla-

I3While in the wave function of Eq. (4.79) the two particles are co-located, a sep-
aration s can be introduced straightforwardly via the modification Yap(za,zp) =
feip(frA*ZBJrS)/hdp.



128 B Quantum optomechanics

tions are imperfect. In the following two subsections, we introduce the stan-
dard methods to quantify two-mode Gaussian entanglement in the presence
of such imperfections.

4.4.5 Covariance matrix

In the linearised regime considered here, the entanglement generated via the
optomechanical interaction between light and a mechanical oscillator is a form
of two-mode Gaussian entanglement. Two-mode Gaussian states are fully char-
acterised by their quadrature expectation values and the covariance matrix

VXAXA VXAYA VXAXB VXAYB

M — VYAXA VYAYA VYAXB VYAYB — IAT C (4‘81)
Vxpxa Vxpva Vxsxs Vxpvs C'|B
VYB Xa VYB Ya VYB XB VYB YB
where

A A

(i) (6040)

Vag =

is the covariance between operators A and l’S’, the 2 x 2 matrices A and B
quantify the variances of the optical and mechanical quadratures and the
internal correlations within each subsystem, while C quantifies the correlations
between the mechanical oscillator and the optical field.

4.4.6 ldentifying and quantifying entanglement

Diagonalisation of the covariance matrix of Eq. (4.81) yields a pair of sym-
plectic eigenvalues vy [256]. As first recognised simultaneously by Duan and

Simon [97, 261], the condition

1
v_ < 5 (483)

is necessary and sufficient for two-mode Gaussian entanglement, where v_
is the smaller of the two eigenvalues. For a general covariance matrix, the
symplectic eigenvalues are given by

17/ _ 1/2
Ve = [— (A + /A2 - 4det(M)>} , (4.84)
2
where det(...) is the determinant and
A = det(A) + det(B) — 2 det(C). (4.85)

The significance of the smaller symplectic eigenvalue with regards to quan-
tum correlations may be understood in the following way. Consider a pair of
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collective observables of the subsystems A and B

o = Xa+cXp (4.86a)
b = Y4—cVp, (4.86b)

where c¢ is a real constant. If subsystems A and B share no correlations, or
indeed share only classical correlations introduced via local operations and
classical communication, then the minimum possible product of standard de-
viations of 4 and ¥ is easily shown to be

B 1+ c?

uncor 9 ’

min {o(a)o(0)} (4.87)
and is achieved when both @ and © are symmetric minimum uncertainty states,
i.e., vacuum or coherent states.

Exercise 4.18 Convince yourself of this.

The criterion of Duan and Simon can be interpreted as stating that subsys-
tems A and B are inseparable if-and-only-if there exists a choice of ¢ for which
arbitrary local operations on each individual subsystem are able to bring the
product of standard deviations o(@)o(0) beneath this value — i.e., if the joint
uncertainty in @ and 9 can be made smaller than the smallest possible uncer-
tainty in the absence of quantum correlations. For a given inseparable state,
the smaller symplectic eigenvalue v_ quantifies exactly this ratio. Specifically,

v_ = 1min{ - U(?)U(f}) } = min {M} , (4.88)
2™ min {o(@)0 () Faneor 1+ 2
where, here, the minimisation is taken over ¢ and all possible local opera-
tions. 14
The logarithmic negativity is a convenient and commonly used parameter to
quantify the strength of a given entanglement resource and has the attractive
properties of both being additive for multiple independent entangled states

and quantifying the maximum distillable entanglement [229]. For two-mode
Gaussian entangled states it is given by

L = min {0, —log, (2v_)}. (4.89)

4.4.7 Entanglement between intracavity field and mechanical oscillator

Given the optomechanical covariance matrix, Eqgs. (4.89) and (4.84) allow
quantification of the entanglement between the intracavity optical field and

14Note that here we express the criterion of Duan in a product form as introduced in [36],
rather than the more familiar sum form. The product form is in the spirit of the Heisenberg
uncertainty relation or the criteria for the Einstein—Podolsky—Rosen paradox [237], and also
achieves the minimum v_ for a wider class of covariance matrices.
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FIGURE 4.11 Covariance matrix elements of intracavity optomechanical
entanglement as a function of optomechanical cooperativity C'. Model
parameters: n =9, ny, = 0.009, k = 10T

the mechanical oscillator. By inspection of Eqs. (4.77) we can immediately
recognise that, as long as there are no correlations in the optical and me-
chanical baths, there will be no correlations between the amplitude and phase
quadratures of the optical field, or indeed between the position and momentum
quadratures of the mechanical oscillator,'® so that

VXLYL = VYLXL = VXMYM = VYMXM = 0- (4.90)

Furthermore, the correlations between light and mechanics are all cross-
quadrature with

Vxexu = Vxuxe = Wive = Wy, = 0. (4.91)

Therefore, the only covariance matrix elements that must be determined
are the variances Vx, x,, Vv, v,, Vx,xu, and Vy,,v,,, and the covariances

15This should be clear because the bath terms that appear in the equations for X, (w)
and Y, (w) are different from those that appear in the equations for YL (w) and Xm (w).
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Vx,ovas Wuxe, Vv xu, and Vx,, v, . For each of these elements the operators
A and B in V45 commute. Furthermore, since the optomechanical Hamil-
tonian is linearised, (X1) = (Y7) = (Xp) = (Yar) = 0 (see Section 2.7).
These two properties allow the definition of the covariance matrix elements in
Eq. (4.82) to be reexpressed more simply as

Vas = (AWB(®) (4.92)
= i _OO dw S ap(w) (4.93)

27
1 > 1At B0 !
= o dew dw <A (—w)B(w )> , (4.94)
™ — o
where to arrive at this result we have, as usual, used Parseval’s theorem and

the definition of the power spectral density in Eq. (1.43).

Exercise 4.19 Using Eqs. (4.77) and (4.94) show that the nonzero covariance
matriz elements are

Vx.x, = VWoyvs
B 1 C 1 _ _
= HL+§+(1_C) (1+H/F>(m+n+1) (4.95a)
Vxuxu = Wuva
1 C 1 _ _
= n+§+(1_0) (1+P/ﬁ>(nL+n+1) (4.95Db)

e 1 -
Veross = <1—C’> (\/m—l- F//@) (np +n+1) (4.95¢)

UJhere ‘/CI‘OSS == VXLY]W == VYMXL == VX}wYL - VYLXM'

We see from Eqs. (4.95) that the variances of the optical field and mechan-
ical oscillator are each equal to their respective bath variances plus a modifica-
tion that depends on the optomechanical cooperativity C', the ratio of optical
and mechanical decay rates, and the sum of the mechanical and optical bath
variances; with cross-correlations growing from zero as the optomechanical
cooperativity increases. The functional dependence of the variances and co-
variances on cooperativity are shown in Fig. 4.11. The equal magnitude of the
two optical quadrature variances, as well as the two mechanical quadrature
variances, and all of the cross-variances, is a result of limiting our treatment
to high-quality oscillators for which it is possible to make a rotating wave
approximation. In this regime any fast fluctuations that can cause differences
between the variances are averaged out. It can also be observed that, as the
system approaches instability (C' — 1), all three correlation matrix elements
approach infinity.

With the covariance matrix elements determined, the logarithmic nega-
tivity can be straightforwardly calculated using Eqs. (4.84) and (4.89). The
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FIGURE 4.12 Logarithmic negativity of intracavity optomechanical entan-
glement as a function of optomechanical cooperativity C', with K = 10T,
Top: Mechanical bath occupancy held fixed at n = 9, with optical bath
occupancy increasing over the range ny, = {0,0.002,0.004, 0.006, 0.008}
from the top to bottom trace. Bottom: Optical bath occupancy held fixed
at n; = 0, with mechanical bath occupancy increasing over the range
n=40,2,4,6,8} from the top to bottom trace.

resulting expressions are not, in general, particularly illuminating. Instead of
reproducing them here, the logarithmic negativity is plotted as a function of
optomechanical cooperativity for a range of different optical ny and mechan-
ical n bath occupancies and x/I" = 10 in Fig. 4.12. We see that, in general,
the entanglement improves as the cooperativity increases. From Fig. 4.12(top)
it is clear that when the mechanical bath has nonzero occupancy, there is a
threshold cooperativity beneath which no entanglement is present, with the
threshold increasing as the optical bath occupancy increases. By contrast,
Fig. 4.12(bottom) shows that, in the realistic scenario where the optical bath
occupancy approaches zero, no such threshold is evident, with entanglement
existing for any mechanical bath occupancy and any nonzero cooperativity.
Indeed, this result can be shown to be true in general, so long as the opti-
cal decay is fast compared to the mechanical decoherence rate, specifically in
circumstances where x > nl'.
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As the optomechanical cooperativity approaches the point of instability
(C — 1), entanglement is present as long as

<%> L+ (g) A<, (4.96)

which restricts the optical and mechanical decoherence rates to be smaller
than the mechanical and optical decay rates, respectively.

4.4.8 Entanglement of the mechanical oscillator with the external field

In the usual regime that x > I', the interaction of the optomechanical sys-
tem with the external optical field occurs much more rapidly than with the
mechanical bath. While this interaction degrades the entanglement present
between the intracavity optical field and the mechanical oscillator, since
the output optical field is generally accessible experimentally, it is natural
to ask how strongly it is entangled to the mechanical oscillator. Using the
input-output relations of Eq. (1.125) and the intracavity field quadratures of
Eqgs. (4.77a) and (4.77b), the output field quadratures from the optomechan-
ical system can be expressed in the frequency domain as

X out(w) = [1 = VEXaa()] Xr,in(@) = VEXas(@)Varim(w)  (4.97a)
Viout () = [1 = vVEXaa()] Viin(w) = VEXas(@) Xarin(w).  (4.97b)

As we saw in Section 1.4, in the Markov and rotating wave approximations
the input and output fields of an optical cavity can be thought of as a train of
infinitesimally separated infinitely narrow optical pulses. At any moment in
time ¢ the mechanical oscillator will exhibit entanglement with some ensemble
of the output pulses, with the correlations decaying over a time scale that can
be expected to depend in some way on the optical cavity and mechanical
linewidths x and I'. Given this decay of correlations, there exists an optimal
temporal mode for the output field that displays maximal correlations (and
therefore entanglement) with the oscillator at time ¢. We would like to identify
this optimal mode.

To approach this problem, we define a temporal mode of the output field
with modeshape u(t), and annihilation operator

ay(t) = u(t) * aou(t), (4.98)
where u(t) is normalised such that
/ lu(t)|*dt = 1. (4.99)

Exercise 4.20 Show that this normalisation of u(t) ensures that a, obeys the
usual Boson commutation relation

[au(t), al, ()] = 1. (4.100)
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FIGURE 4.13 Schematic diagram of the use of classical Wiener filtering
to estimate a continuous-in-time signal z(t) after it has been processed
by a system that filters it (f(¢)) and adds noise (n(t)). Z(¢) is the final
estimate.

The entanglement between this output temporal mode and the mechanical
oscillator can be quantified in a manner similar to the case for the intracavity
field dealt with in the previous section. However, as discussed already, before
doing this we would like to determine the mode that exhibits maximal entan-
glement with the mechanical oscillator. This is the topic of the next section.

4.4.8.1 Wiener filtering

Estimation of a signal x(t) from a measurement y(t) is a common problem in
classical control systems and information processing. For stationary processes
and additive noise n(t), the measurement y(¢) is related to the signal via
y(t) = f(t) * x(t) + n(t), where f(t) is some filter function. In this scenario,
the optimal estimation strategy is to apply a Wiener filter hy),(t) to y(t),
retrieving an estimate of the signal Z(t) = hy, (t) * y(t) (see Fig. 4.13) [311].

Since linear quantum systems such as that described by the linearised op-
tomechanical Hamiltonian of Eq. (2.18) are unable to generate Wigner func-
tion negativity, their statistics may be fully explained through an equivalent
classical process. As such, results from classical information processing can be
readily applied [90]. In our specific case, Wiener filtering can be used to deter-
mine the optimal filter to apply to a measurement on the output field from a
cavity optomechanical system to estimate the position quadrature (or momen-
tum quadrature) of the mechanical oscillator at time t. As well as providing key
information to practically perform measurement-based conditioning protocols
such as feedback cooling as discussed in Chapter 5, this process identifies the
temporal modes of the output field that are maximally correlated to each of
the position and momentum quadratures of the mechanical oscillator at time
t.

Both causal and noncausal Wiener filters exist [53]. Noncausal filters are
generally used in information processing where one has access to the full mea-
surement record, while causal filters are appropriate for real-time control ap-
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FIGURE 4.14 Wiener filter for optimal entanglement between a mechan-
ical oscillator and an external optical field, with optomechanical co-
operativity C' = 0.9 and bath occupancies n = n; = 0 and for
k/T" = {0.1,1,10,100,1000} from the bottom to the top trace. Inset,
corresponding time-domain wave-packet for K = 100T". Note that these
filters are noncausal.

plications where only the measurement record prior to the time ¢ is available.
In assessing optomechanical entanglement we should, in principle, use a causal
filter since at time t the mechanical oscillator can only be entangled with the
external optical field that has already interacted with it and has left the sys-
tem before that time. However, for simplicity here we instead use a noncausal
filter.16 Once we have obtained solutions for the profile of the optimal non-
causal temporal mode, we will be able to assess how close to causal they are.
The exact noncausal Wiener filter is given in the frequency domain by [53]

higpy(w) = Syz(w) (4.101)

Syy(w) ’

where Sy, (w) and Sy, (w) are the usual self- and cross-power spectral densities.

As can be observed in Egs. (4.97), only the mechanical momentum quadra-
ture appears on the output optical amplitude quadrature; similarly, only the
mechanical position quadrature appears on the output optical phase quadra-
ture. The Wiener filters that allow optimal estimation of each mechanical

16The reader is encouraged to approach the same problem using causal filtering.
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quadrature are then given by

5Y1 0w Xar (W)
hxar| Ve oue (W) = S, = - > ) (4.102a)
L,out I L,out

S
By X g (W) = g W) _ (4.102b)

SXL,outXL,out (CL})

These filter functions are not identical, in general, which leads to some
ambiguity as to the temporal mode that is maximally entangled to the me-
chanical oscillator. Here, however, since our analysis is limited to the regime
in which the rotating wave approximation is valid, the filters coincide. Using
Egs. (4.97), they can be found to be

(1 = VEXaa(@)) X5 (W) (R + 1/2) = VEXab (@) X5 (W) (7 + 1/2)

h(w) =
) 1= ViXaa(@)[* (7, + 1/2) + £ [xab ()] (2 + 1/2)

(4.103)
The temporal modeshape that is optimally entangled to the mechanical oscil-
lator is then given in the frequency domain by

u(w) = Nh(w), (4.104)

where the normalisation constant N is

N = [/oo |h(t)|2dt]_1/2 — Vor UOO \h(w)\de} P o)

— 00 — 00

The modeshape defined in Eq. (4.104) is shown in Fig. 4.14 for the specific
case of n, = n = 0 and an optomechanical cooperativity of C = 0.9. The
main figure plots the modeshape in the frequency domain as a function of the
ratio k/I". It can be seen that, when I' < &, the filter is essentially a causal
low-pass filter with a cut-off frequency of approximately I' — that is, as might
be expected, the temporal width of the optimal mode-shape is determined
by the mechanical decay time. As I' approaches and eventually exceeds k,
the modeshape is modified subtly due to the approach of the strong coupling
regime, evidenced by the slight resonance feature in the bottom trace of the
figure, and becomes increasingly noncausal.

The figure inset shows the optimal modeshape in the temporal domain for
k/T" = 100. As can be seen, the modeshape can be approximately described
as a causal single-sided exponential with a decay rate of I'. However, for this
ratio of optical to mechanical decay rates, there still exists some noncausal
contribution in the form of a forwards-in-time exponential of reduced am-
plitude. The causal contribution is larger because at time ¢ the mechanical
oscillator is correlated via the past radiation pressure to the optical field that
entered the cavity prior to ¢, but is clearly not correlated to the optical field
that enters the cavity subsequently. As a result, the optical field at times
earlier than t carries a greater amount of information about the mechanical
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oscillator and is weighted more strongly by the filter. It is this effect that,
for sufficiently high optomechanical cooperativities and optical decay rates,
results in an approximately causal filter.

From Eq. (4.98) we see that, in the frequency domain, the quadratures
of the temporal mode u(t) are simply X, (w) = u(w)X7 out(w) and Yy (w) =
u(w)YLput(w). The covariance matrix elements between these quadratures
and the mechanical oscillator can then be calculated in a similar manner
as the intracavity case of Section 4.4.7, allowing quantification of the level
of entanglement present between the two systems. The resulting logarithmic
negativity is shown for x/I" = 1000 and various bath occupancies in Fig. 4.15.
In the top figure, the mechanical bath occupancy is held fixed at n = 0
while the optical bath occupancy is increased from zero to, ultimately, infinity
(dashed trace), showing that, for 7 = 0, the entanglement between the external
cavity field and the mechanical oscillator is reduced as nj increases but is
always present. In the bottom trace the optical occupancy is held fixed at ny, =
0. Again, we see that the entanglement is degraded as the mechanical bath
occupancy increases. However, here, a threshold optomechanical cooperativity
is introduced below which no entanglement is present. Since the system is
unstable for C' > 1, this ultimately introduces a maximum mechanical bath
occupancy beyond which entanglement is only possible if some additional
technique is introduced to stabilise the system.

It may seem surprising that, if the mechanical bath is in its ground state,
the output optical field is always entangled to the mechanical oscillator in-
dependent of the optical occupancy ny. However, this can be understood in
the following way. Consider an attempt to estimate the mechanical position
quadrature Xy from a measurement of the field exiting the optomechan-
ical system. As we have already discussed, the optimal estimate is given by
XEHE) = hx s [vs 0w (1) %Y ous (), with an uncertainty of (X (t) — X §5(1))?).
When the mechanical bath is in its ground state, the uncertainty of this esti-
mate is smaller than the mechanical zero-point uncertainty for any choice of
nr.

Exercise 4.21 Exercise. Show this result numerically, or otherwise.

As such, an optical phase quadrature measurement conditionally prepares a
mechanical state with squeezed position quadrature (see Section 5.3.2 for fur-
ther discussion of mechanical squeezed state preparation via measurement).
Similarly, a measurement of the output optical amplitude quadrature condi-
tionally prepares a momentum quadrature squeezed mechanical state. !7 The
observables @ = X/ (t) — X5t (t) and © = Y (t) — Y5(¢) then clearly exhibit
joint uncertainty beneath the minimum uncertainty that is possible when only
classical correlations are present (see Eq. (4.87) in Section 4.4.6), which, as
we discussed in Section 4.4.6, is a sufficient criterion for entanglement.

17Note that, since X r and ?L cannot be measured simultaneously without a noise penalty,
this does not allow the Heisenberg uncertainty principle to be violated.
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FIGURE 4.15 Logarithmic negativity of entanglement between mechanical

oscillator and output optical field as a function of optomechanical co-
operativity C, with k = 10001". Top: Mechanical bath occupancy held
fixed at n = 0, with optical bath occupancy increasing over the range
ny = {0,1,10} from the top to bottom trace. Dashed line: logarith-
mic negativity as np — oo. Bottom: Optical bath occupancy held fixed
at ny = 0, with mechanical bath occupancy increasing over the range
n=1{0,1,2,4,8} from the top to bottom trace.

As mentioned above, optomechanical entanglement was first demonstrated
in 2013 [217] using a lumped element superconducting microwave optome-
chanical system. In this implementation a pulsed optomechanics protocol was
used [292], with an initial blue-detuned pulse generating entanglement and a
second red-detuned pulse transferring the mechanical state out onto the mi-
crowave field. Ultimately, time-delayed entangled was observed between two
microwave pulses. The experimental protocol and final covariance matrix are
shown in Fig. 4.16.



Coherent interaction between light and mechanics W 139

A
N, Cool

Ny
B 2

1t
=
E o
>§

o

. 5 i 2 i i i

-0 100 200 300 400 500 600 700

3 t(us)

FIGURE 4.16 Optomechanical entanglement observed using a supercon-
ducting optomechanical system of the form shown in Fig. 2.2 (top left).
From [217]. Reprinted with permission from AAAS. (A) Pulsed proto-
col to cool the mechanical oscillator, entangle it with a microwave field,
and transfer the mechanical state out onto a second microwave field.
(B) Detected microwave field as a function of time, showing the expo-
nentially amplified initial entangled field leaving the microwave circuit
followed by a second field as the mechanical motion is later transferred
onto the intracavity field and decays out of the circuit. (C) Measured
covariance matrix with off-diagonal elements evidencing entanglement.
Here X3 and Y, are the mechanical, and X, and Y, are the optical (or
strictly speaking, microwave) quadrature operators.
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FIGURE 4.17 Ball and stick diagram of the concept of Kerr squeezing.
Reprinted by permission from Macmillan Publishers Ltd: Nature Photon-
ics [49], copyright 2013. The Kerr effect generates an intensity-dependent
phase shift which skews the quantum noise distribution of light and can
result in squeezing of the noise on one quadrature beneath the vacuum
noise level.

4.5 MECHANICAL SQUEEZING OF LIGHT

From the perspective of the optical field, the optomechanical interaction im-
parts an intensity-dependent phase shift. The intensity of the optical field
imparts momentum on the mechanical oscillator. This shifts its position, al-
tering the phase of the optical field. Intensity-dependent phase shifts, or Kerr
nonlinearities, are a common method to produce optical squeezing [263] (see
Fig. 4.17) and can even generate optical states with Wigner negativity [329].18
It is therefore unsurprising that the optomechanical interaction is capable of
producing squeezed light. However, there are some characteristic differences
between this ponderomotive squeezing produced by interaction with a mechan-
ical oscillator and squeezing produced by other nonlinear interactions that
generate an intensity-dependent phase shift, such as the Kerr effect in opti-
cal fibres [260]. Most importantly, the mechanical resonance introduces strong
dispersion to the squeezing spectra and restricts the bandwidth of squeezing,
while coupling to the mechanical bath can introduce significant degradation
on the levels of achievable squeezing. This section will quantitatively introduce
mechanical squeezing of light and examine these effects in some detail.

18Though exceptionally strong nonlinearities are required to achieve this.
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4.5.1 Basic concept

While ponderomotive squeezing is generally thought of as a continuous steady-
state process, the basic idea may be understood by considering a pair of uni-
tary interactions between the optical field and the mechanical oscillator. The
essential goal is to introduce correlations between the optical amplitude and
phase quadratures mediated by the mechanical oscillator. In the first unitary
interaction the optical phase quadrature is displaced by a factor proportional
to the mechanical position and the mechanical momentum is displaced by a
factor proportional to the optical amplitude, i.e.,

Y = Y+XQ (4.106a)
P = P+)X, (4.106b)

where here ) is a proportionality constant that quantifies the strength of the
interaction, and — since we treat ponderomotive squeezing without moving
into a rotating frame for the mechanical oscillator — we have returned to
our usual notation, with X and Y representing the optical amplitude and
phase quadratures, and Q and P representing the mechanical position and
momentum. The optical amplitude quadrature and mechanical position are
left unaffected by the interaction.

If the mechanical oscillator is then allowed to evolve for a quarter of a
cycle, the perturbed momentum rotates into a position, Q” = —P’. A second
interaction of the same form as Eq. (4.106) then results in the final optical
quadratures

A

X" = X (4.107a)
Vo= V4 (Q - 13> ~ AR, (4.107b)

We see that this series of interactions imprints the optical amplitude quadra-
ture onto the optical phase quadrature, introducing a correlation, and also
imprints the original mechanical position and momentum operators on the
light. It is introducing exactly the intensity (or amplitude) dependent phase
shift we expect of an optical Kerr nonlinearity. This shears the distribution
of quantum noise on the optical field in a similar way to the illustration in
Fig. 4.17.

Given the correlations between X" and V", there will exist some rotated
quadrature of the optical field Y"¢ where X is ehmmated

Exercise 4.22 Using the definition of the rotated operator in Eq. (1.17b),
which applies equally well to the phase quadrature operator as to the dimen-
stonless momentum operator, show that X s eliminated on the Y quadrature
when tan® = —\2, and that choosing this quadrature angle,

v+ (Q-P)

1}//9 —
VAt +1

(4.108)
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It is evident from this expression that, even including the mechanical position
and momentum fluctuations, as the interaction strength A — oo, the variance
of Y"" will approach zero, in principle allowing perfect optical squeezing.

4.5.2  Understanding ponderomotive squeezing via the polaron trans-
formation

The intuition that a continuous optomechanical interaction can be thought
of, from the perspective of the light, as a Kerr nonlinearity can be put on a
solid foundation by making use of the polaron transformation to diagonalise
the optomechanical Hamiltonian H. This approach is common in condensed
matter physics where it is useful to treat problems involving linear coupling
between electrons and phonons (see, for example, [187]). The essential idea is
to apply a displacement to the mechanical oscillator that corrects for the shift
in the mechanical oscillator equilibrium position due to the interaction with
the optical field.

The magnitude of the displacement due to the optomechanical interaction
may be found, for example, by completing the square on the full (nonlin-
earised) Hamiltonian of Eq. (2.18).

Exercise 4.23 Show that, to third order in the operators,'® Eq. (2.18) may
be re-expressed as

. Q
H = hAata + %

2
P? 4 <Q + \/?290 aTa) ] . (4.109)

This expression makes clear that the radiation pressure interaction displaces
the dimensionless mechanical position by —v/2goa’a/S, consistent with our
mean field observations from Chapter 2.

4.5.2.1 Polaron transformation

In the polaron transformation, one cancels this displacement by applying an
opposite but equivalent displacement via the unitary operator

V240

S =exp {z aTap] . (4.110)
The Hamiltonian of Eq. (2.18) is then transformed to

H = 8'as (4.111)

= hAa'a — hyo (aTa,)2 + ? (Q2 + ]52> , (4.112)

9By this we mean neglecting any terms that involve the product of more than three
operators.
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where we have defined the single-photon optical frequency shift

g%
= = 4.113
X0 Qa ( )

and identify operators in the polaron frame via the bar accent. As we will see
in Chapter 6, this is an important parameter for single-photon optomechanics.

Exercise 4.24 Show that

A \/590 ata
Q 9

Q=5Q5=0Q- (4.114)

making use of the Hadamard lemma

A A

i A PR 1
eBe 4 = B+ [A, B] +

1
2‘[

A4 BY) + (A 14,14, B+
Then derive the polaron transformed Hamiltonian of Eq. (4. 112) Jrom
Eq. (2. 18) using the general property of a unitary operator U that UTABU =

UtA1BU = UTAUUBU, where 1 is the identity operator.

This new Hamiltonian makes a number of things transparent about the op-
tomechanical interaction. Most particularly, we see that the dynamics of the
mechanical oscillator and intracavity field are now independent. The optome-
chanical interaction term in Eq. (2.18) has been replaced with the photon-

photon interaction term yj (aTa)2 characteristic of a pure optical Kerr nonlin-
earity with no dependence on the dynamics of the mechanical oscillator. Notice
that this term is proportional to go squared, since the effective photon-photon
interaction involves two interactions with the mechanical oscillator, one to
drive the motion of the oscillator and the other to transduce the motion back
onto the optical field.?? This conversion of an optomechancal nonlinearity to
a purely optical one was the primary purpose of the polaron transformation.
In the absence of other nonlinear terms in the Hamiltonian, it is well known
that the optical Kerr nonlinearity is capable of generating squeezed states of
light [328, 263, 260] and even, in principle, Schrédinger’s cat-like states [329].

4.5.2.2 Squeezing action in the polaron picture

We can understand why a term proportional to (afa)? will generate squeezing
of the optical field by expanding and linearising this term, replacing a — a+a
and neglecting terms that are lower than second order in a:

(aTa)2 — o+ a0 +2a%(a" +a) +4a%a’a + o® (a? + a?). (4.115)

The first two terms in this expansion are static and have no effect on the
dynamics of a, the third is a displacement, and the fourth a frequency shift.

20 As we saw in our toy example in Section 4.5.1.
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The last term can be seen to produce correlated pairs of photons within the
cavity. It is this term that is responsible for squeezing the intracavity field.
Using Egs. (1.17)?! we can reexpress

a'? 4 a? = —4x™/AyT/4 (4.116)

within a constant, where X™/4 and Y7/ are quadrature operators that are
rotated by 7/4 from the amplitude and phase quadratures. Setting the overall
cavity detuning to zero, including the shift from Eq. (4.115), and neglecting
the static and displacement terms from Eq. (4.115), the linearised Hamiltonian
describing the intracavity field is then simply

A

H = 4hxyX7/4y™/4, (4.117)

where x = xo« is the coherent amplitude boosted optical frequency shift. This
is the classical Hamiltonian for parametric squeezing.

Exercise 4.25 Using the quantum Langevin equation of Fq. (1.112) show
that this Hamiltonian acts to cimplz'fy the X™/* quadrature while deamplifying
(and therefore squeezing) the Y™/* quadrature.

4.5.2.3 Interaction with the coherent drive and the optical and mechanical
baths

While the above discussion appears to suggest that, by performing a polaron
transformation, we have found an exceptionally simple method to model pon-
deromotive squeezing, unfortunately this is not the case. While the polaron
transform diagonalises the system Hamiltonian, it introduces coupling be-
tween the mechanical oscillator and the optical field through its effect on the
drive and system-bath interaction Hamiltonians. This can be seen straight-
forwardly by applying the polaron transformation to the drive term in the
Hamiltonian of Eq. (2.35).

Exercise 4.26 Using the same approach as in FExercise 4.24 show that

A

N 2
"aS = aexp [z ng P} , (4.118)

%

a=

and therefore that, in the polaron frame, the drive term in Eq. (2.85) is de-
pendent on the mechanical momentum quadrature P.

Similarly, applying the polaron transformation to the system-bath terms in
Egs. (1.69) and (1.111) one finds that, in the polaron frame, the system-bath
coupling terms introduce a new optomechanical interaction, with the coupling

21These equations can be applied to the quadrature operators as well as the dimensionless
position and momentum, with Q — X and P — Y.
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rate between the optical field and its bath dependent on the mechanical po-
sition. This is a form of dissipative optomechanical coupling, as discussed in
Section 2.8. A linear coupling is also introduced between the intracavity op-
tical field and the mechanical bath. This coupling is direct — i.e., it is not
mediated by the mechanical oscillator.

Overall, these effects mean that, while the polaron transformation is useful
for understanding the unitary dynamics of ponderomotive squeezing, it does
not yield significant benefits for modelling the nonunitary dynamics. We return
to the polaron transformation in Chapter 6, where it proves to be highly useful
for studying quantum optomechanics at the single-photon level. Henceforth
in this section, we use the usual optomechanical Hamiltonian.

4.5.3 Squeezing spectra

In Sections 3.2 and 3.3 we examined radiation pressure shot noise heating of a
mechanical oscillator and the standard quantum limit to measurements of me-
chanical motion using the linearised optomechanical Hamiltonian of Eq. (2.41)
in the zero detuning limit. However, in those sections we examined only the
effect of the quantum noise of the light on the temperature of the mechanical
oscillator and the information contained on the phase quadrature of the out-
put optical field about the mechanical motion. We did not look at correlations
induced by radiation pressure between the amplitude and phase of the output
optical field.

While it is possible to generate ponderomotive squeezing in the general case
where A # 0, here, for simplicity, we again restrict ourselves to the zero detun-
ing case.?? To examine correlations in the output field, we must express the
output optical phase quadrature Vout in terms of the optical and mechanical
input fluctuations. This is straightforward to do using Eqgs. (3.29b) and (3.12),
with the result

N __(,%/Z-I—iw

Fons() = = (322 ) ¥i) + 20) [ B Pal) — 2 K )]

(4.119)
where we have returned to our usual definitions of the optical amplitude
and phase quadratures (X and Y, _respectively) and dimensionless position
and momentum operators (Q and P, respectively). We see that, through the
optomechanical interaction, the input fluctuations of the optical amplitude
quadrature are imprinted on the output optical phase quadrature, just as we
found earlier for the simple model of two discrete and temporally separated
interactions (Section 4.5.1). This induces correlations that are at the heart
of ponderomotive squeezing. It should be noted that the correlations are en-
hanced close to the mechanical resonance due to the mechanical susceptibility
pre-factor x(w). Furthermore, as the optomechanical cooperativity Ceg in-

22The case of nonzero detuning displays the same qualitative behaviour.
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creases, the contribution from the optical amplitude increases at a faster rate
than that from mechanical input fluctuations.

Using Eq. (4.119) in combination with the output optical amplitude given
in Eq. (3.29a), an arbitrary output quadrature at phase angle # may be de-
termined via Eq. (1.17a), with the result

0
Xout

(W) = — [(:g—fzi) cos + 4T Cegry(w) sin | Xin(w)  (4.120)

2+ - .
- (%) sin 0 Yin(w) 4+ 2I'/2Ceg X (w) sin 0 Py (w).
The symmetrised power spectral density that would be measured via perfect
homodyne detection can then be calculated using Eqs. (1.65) and (1.99) and
is given by

— 1 1
Sxo xo (W) = 5+ 82|\ (w)|? |Cotr] <ﬁ + |Cort| + 5) sin2 0
+T |Cetr| (X (w) + X" (w)) sin 20, (4.121)

where for simplicity we have taken the output field to be shot noise limited
(nr = 0). The first term is the original quantum noise on the quadrature in
the absence of any optomechanical interaction. The second term is a form of
mechanical heating proportional to the variance of the mechanical position in
the presence of radiation pressure driving and is always positive. The third and
final term is the correlation term responsible for ponderomotive squeezing and
gives the power spectral density a Fano-like shape. For the output quadrature
to exhibit quantum squeezing below the shot noise level (1/2), this term must
be negative and have a magnitude larger than the second term. This leads to
the necessary and sufficient condition for quantum squeezing (.S xo xo (W) <
1/2),
Q2 o w2

2I'Q tan 6’

where we have made use of the definition of the mechanical susceptibility given
in Eq. (1.102). Thus we see that quantum squeezing cannot occur exactly
on the mechanical resonance (w = 2). By contrast, at all other frequencies
quantum squeezing is always present for some range of phase angles 6, since
for any frequency w # Q the right-hand side of Eq. (4.122) goes to infinity
as # — 0 from either above or below. We can further observe that, for a
given phase angle 6, squeezing will only exist on one side of the mechanical
resonance frequency, with the side showing squeezing dictated by the sign of
tan 6. The ponderomotive squeezing predicted from Eq. (4.121) is plotted for
a range of parameters in Fig. 4.18a and b, showing this asymmetric frequency
response around the mechanical resonance.

Minimising Eq. (4.121) over 6 yields the optimal angle 6,p¢ to achieve

1
i+ |Cot| + 5 < (4.122)
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FIGURE 4.18 Theoretical model of ponderomotive squeezing, using the
parameters £/Q = 10, n = 10, and @ = 1,000. (a) Squeezing as a func-
tion of frequency w for an optomechanical cooperativity of C' = 50. Top
trace: power spectral density of the output quadrature S X0 X9 (w)

,out " L,out

with phase angle 8 = 7/25. Bottom trace: power spectral density choos-
ing the optimal phase angle fop(w) for each frequency. Dashed line:

shot noise level. (b) 101log;,{S X0 X0 t((.u)} as a function of frequency
and optomechanical cooperativit)y 7fory0 = 7/25. Solid trace: contour of
Sxo xo (w)=1/2. (c) 10logyo{Sxs xs (w)} as a function of fre-

quency and optomechanical cooperativity choosing the optimal phase
angle Oopt (w).
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maximum squeezing, given by

w2 _QZ
2T (n + |Cot| + 1/2)

tan 20, = (4.123)

We see that the squeezing angle rotates as a function of frequency, cross-
ing zero at the mechanical resonance frequency. The optimal squeezing at
each frequency is shown for a range of parameters in Fig. 4.18a and c. We
observe that, indeed, no squeezing is possible on the mechanical resonance,
while broadband squeezing is achieved, in principle, over all other frequencies,
with the level of squeezing increasing with effective cooperativity. The pon-
deromotive squeezing is resonantly enhanced near the mechanical resonance
frequency, such that substantial levels of squeezing typically only exist in a
relatively narrow band of frequencies. This contrasts techniques to generate
squeezed light using standard nonlinear optical materials which are able to
routinely generate broadband squeezing.

As we will see in Section 5.4.3, the ability to generate squeezing via the op-
tomechanical interaction provides one path to overcome the standard quantum
limit introduced in Section 3.4. However, as will be discussed in that section,
the squeezing angle rotation evident in Eq. (4.123) complicates this approach
to sub-standard quantum limited measurement, resulting in noise suppression
only in a small band of frequencies unless specialised measurement techniques
referred to as variation measurements are employed (see Fig. 5.9).

Ponderomotive squeezing was first proposed in 1994 [103, 189] and first
demonstrated in 2012 [52]. It has been observed in several optomechanical ar-
chitectures including intracavity cold atom ensembles [52], silicon nitride mem-
brane optomechanical systems [232], and optomechanical zipper cavities [245].
Figure 4.19 shows an optomechanical zipper cavity and the observed optical
power spectrum for a fixed homodyne phase angle. It can be observed that
the power spectrum exhibits the expected Fano-like feature, with a small re-
gion of quantum squeezing observed at frequencies just below the mechanical
resonance frequency.
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FIGURE 4.19 Ponderomotive squeezing observed from an optomechanical
zipper cavity. Adapted by permission from Macmillan Publishers Ltd:
Nature [245], copyright 2013. (a) and (b) Scanning electron micrscope
images and optical modelling of the zipper cavity structure. (¢) Optical
power spectral density observed for one homodyne phase angle and nor-
malised to the shot noise level. PSD: power spectral density of output
field.



